Optogenetic activation of septal GABAergic afferents entrains neuronal firing in the medial habenula
نویسندگان
چکیده
The medial habenula (MHb) plays an important role in nicotine-related behaviors such as nicotine aversion and withdrawal. The MHb receives GABAergic input from the medial septum/diagonal band of Broca (MS/DB), yet the synaptic mechanism that regulates MHb activity is unclear. GABA (γ -aminobutyric acid) is a major inhibitory neurotransmitter activating both GABAA receptors and GABAB receptors. Depending on intracellular chloride concentration, however, GABAA receptors also function in an excitatory manner. In the absence of various synaptic inputs, we found that MHb neurons displayed spontaneous tonic firing at a rate of about ~4.4 Hz. Optogenetic stimulation of MS/DB inputs to the MHb evoked GABAA receptor-mediated synaptic currents, which produced stimulus-locked neuronal firing. Subsequent delayed yet lasting activation of GABAB receptors attenuated the intrinsic tonic firing. Consequently, septal GABAergic input alone orchestrates both excitatory GABAA and inhibitory GABAB receptors, thereby entraining the firing of MHb neurons.
منابع مشابه
Functional Principles of Posterior Septal Inputs to the Medial Habenula
The medial habenula (MHb) is an epithalamic hub contributing to expression and extinction of aversive states by bridging forebrain areas and midbrain monoaminergic centers. Although contradictory information exists regarding their synaptic properties, the physiology of the excitatory inputs to the MHb from the posterior septum remains elusive. Here, combining optogenetics-based mapping with ex ...
متن کاملDual GABAergic synaptic response of fast excitation and slow inhibition in the medial habenula of rat epithalamus.
We report here a novel action of GABAergic synapses in regulating tonic firing in the mammalian brain. By using gramicidin-perforated patch recording in rat brain slices, we show that cells of the medial habenula of the epithalamus generate tonic firing in basal conditions. The GABAergic input onto these cells at postnatal days 18-25 generates a combinatorial activation of fast excitation and s...
متن کاملA Unique Population of Ventral Tegmental Area Neurons Inhibits the Lateral Habenula to Promote Reward
Lateral habenula (LHb) neurons convey aversive and negative reward conditions through potent indirect inhibition of ventral tegmental area (VTA) dopaminergic neurons. Although VTA dopaminergic neurons reciprocally project to the LHb, the electrophysiological properties and the behavioral consequences associated with selective manipulations of this circuit are unknown. Here, we identify an inhib...
متن کاملEpidural optogenetics for controlled analgesia
BACKGROUND Optogenetic tools enable cell selective and temporally precise control of neuronal activity; yet, difficulties in delivering sufficient light to the spinal cord of freely behaving animals have hampered the use of spinal optogenetic approaches to produce analgesia. We describe an epidural optic fiber designed for chronic spinal optogenetics that enables the precise delivery of light a...
متن کاملSynaptic Targets of Medial Septal Projections in the Hippocampus and Extrahippocampal Cortices of the Mouse.
Temporal coordination of neuronal assemblies among cortical areas is essential for behavioral performance. GABAergic projections from the medial septum and diagonal band complex exclusively innervate GABAergic interneurons in the rat hippocampus, contributing to the coordination of neuronal activity, including the generation of theta oscillations. Much less is known about the synaptic target ne...
متن کامل